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Abstract We show that the polynomial Sm,k(A,B), that is the sum of all words in noncom-
muting variables A and B having length m and exactly k letters equal to B, is not equal to
a sum of commutators and Hermitian squares in the algebra R〈X,Y 〉, where X2 = A and
Y 2 = B, for all even values of m and k with 6 ≤ k ≤ m − 10, and also for (m, k) = (12,6).
This leaves only the case (m, k) = (16,8) open. This topic is of interest in connection
with the Lieb–Seiringer formulation of the Bessis–Moussa–Villani conjecture, which asks
whether Tr(Sm,k(A,B)) ≥ 0 holds for all positive semidefinite matrices A and B. These
results eliminate the possibility of using “descent + sum-of-squares” to prove the BMV
conjecture.

We also show that Sm,4(A,B) is equal to a sum of commutators and Hermitian squares
in R〈A,B〉 when m is even and not a multiple of 4, which implies Tr(Sm,4(A,B)) ≥ 0 holds
for all Hermitian matrices A and B, for these values of m.
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1 Introduction

While working on quantum statistical mechanics, Bessis, Moussa and Villani [1] conjectured
in 1975 that for any positive semidefinite Hermitian matrices A and B , the function t �→
Tr(eA−tB) is the Laplace transform of a positive measure supported in R+. This is referred
to as the Bessis–Moussa–Villani or BMV conjecture. In 2004, Lieb and Seiringer [9] proved
that the BMV conjecture is equivalent to the following reformulation: for every A and B as
above, all of the coefficients of the polynomial

p(t) = Tr((A + tB)m) ∈ R[t] (1)

are nonnegative. Recently, there has been much activity around this algebraic reformulation,
(see [2, 4–6, 8]). The latest state of knowledge is summarized in [6], and we’ll review this
here.

Let Sm,k(A,B) denote the sum of all words of length m in A and B having k letters equal
to B and m − k equal to A. Thus, the coefficient of tk in the polynomial p(t) of (1) is equal
to the trace of Sm,k(A,B), and the Lieb–Seiringer reformulation of the BMV conjecture is
that this trace is always nonnegative. An important result, due to Hillar [4], is that if this
conjecture fails for some (m, k), then it fails for all (m′, k′) satisfying k′ ≥ k and m′ − k′ ≥
m − k. We’ll refer to this as Hillar’s descent theorem.

One strategy that has been used to show that the trace of Sm,k(A,B) is nonnegative for
certain values of m and k is to let X and Y be formal square roots of A and B , respectively
and, working in the algebra R〈X,Y 〉 of polynomials in noncommuting variables X and Y ,
to show that Sm,k(A,B) is equal to a sum of commutators [g,h] = gh − hg and Hermitian
squares f ∗f . Here, the algebra R〈X,Y 〉 is endowed with the involutive ∗-operation that is
anti-multiplicative and so that X = X∗ and Y = Y ∗ are Hermitian. We adopt the notation

of [6] and say that two elements a, b ∈ R〈X,Y 〉 are cyclically equivalent (written a
cyc∼ b) if

they differ by a sum of commutators. We will use repeatedly Proposition 2.3 of [6], which
states that two words v and w in X and Y are cyclically equivalent if and only if they can be
written v = u1u2 and w = u2u1 for words u1 and u2 in X and Y , and that two polynomials
a, b ∈ R〈X,Y 〉 are cyclically equivalent if and only if for each cyclic equivalence class [w]
of words in X and Y , the sum over all v in [w] of the coefficients av of a agrees with the
sum over all v in [w] of the coefficients bv of b. It is clear that any element of R〈A,B〉
that is cyclically equivalent in R〈X,Y 〉 to a sum of Hermitian squares in R〈X,Y 〉 must have
nonnegative trace whenever A and B are replaced by positive semidefinite matrices, and this
has been the strategy used to show that Sm,k(A,B) has nonnegative trace, for certain values
of m and k. We will adopt the terminology of [6] and write �2 to denote the set of elements
of R〈X,Y 〉 that are cyclically equivalent to sums of Hermitian squares in R〈X,Y 〉. (It is not
difficult to see that �2

C ∩ R〈X,Y 〉 = �2, where �2
C is the analogous quantity in C〈X,Y 〉.)

Clearly, Sm,k(A,B) ∈ �2 if and only if Sm,m−k(A,B) ∈ �2. Due to work of Hägele [3],
Landweber and Speer [8], Burgdorf [2] and Klep and Schweighofer [6], it is known that
Sm,k(A,B) ∈ �2 holds

• whenever k ∈ {0,1,2,4}
• for m = 14 and k = 6
• for m ∈ {7,11} and k = 3

These cases together with Hillar’s descent theorem implied that the Lieb–Seiringer formu-
lation of the BMV-conjecture holds for m ≤ 13 (see [6]). On the other hand, it is known that
Sm,k(A,B) /∈ �2 holds
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• whenever m ≥ 12 or m ∈ {6,8,9,10} and k = 3
• whenever m ≥ 10 and 5 ≤ k ≤ m − 5 and either k or m is odd.

It was hoped that proofs of Sm,k(A,B) ∈ �2 for other values of m and k would be possible,
so as to prove the conjecture for more values of m, and possibly even to prove the BMV
conjecture itself.

These results left open the cases (m, k) = (12,6) and m ≥ 16, 6 ≤ k ≤ m − 6 with both
m and k even. In this paper (see Sect. 2), we prove Sm,k(A,B) /∈ �2 whenever m and k are
even and 6 ≤ k ≤ m−10. Using Sm,k(A,B) = Sm,m−k(B,A), this leaves open only the cases
(m, k) = (12,6) and (m, k) = (16,8). We resolve the first of these cases by showing, via an
easier argument, S12,6(A,B) /∈ �2. The case of (m, k) = (16,8) remains open, though, as
indicated in [6], numerical evidence seems to suggest it does not lie in �2.

Our results, thus, show that it is impossible to prove the BMV conjecture by show-
ing that Sm,k(A,B) is cyclically equivalent to a sum of Hermitian squares for suffi-
ciently many values of m and k. However there are other plausible approaches to showing
Tr(Sm,k(A,B)) ≥ 0 must always hold.

Though our proofs are straightforward and easy to check by hand, to find them we cal-
culated with Mathematica 7.0 [10], on an Apple MacBook running OS X version 10.4.11.

While exploring, we found (see Proposition 3.3) that if m is even and is not a mul-
tiple of 4, then Sm,4(A,B) is equal to a sum of commutators and Hermitian squares in
R〈A,B〉. Thus, we do not need the square roots of A and B: for these values of m we have
Tr(Sm,4(A,B)) ≥ 0 whenever A and B are Hermitian matrices.

Question 1.1 Do we have Tr(Sm,k(A,B)) ≥ 0 whenever A and B are Hermitian matrices
and m and k are even integers, m ≥ k?

Using Hillar’s descent theorem, a positive answer to Question 1.1 would imply the Lieb–
Seiringer formulation of the BMV conjecture.

We will prove the following theorem in Sect. 4. It shows that Question 1.1 has an equiv-
alent formulation that seems easier to satisfy, and is analogous to Theorem 1.10 of [4]. Note
that Sm,k(A,B) is Hermitian whenever A and B are Hermitian.

Theorem 1.2 Fix n,m,k ∈ N with m and k even and m ≥ k. Then the following are equiv-
alent:

1. for all n × n Hermitian matrices A and B , we have Tr(Sm,k(A,B)) ≥ 0,
2. for all n × n Hermitian matrices A and B , either Sm,k(A,B) = 0 or Sm,k(A,B) has a

strictly positive eigenvalue.

In Sect. 3 we also show (Proposition 3.8) that S8,4(A,B) is not cyclically equivalent to
a sum of Hermitian squares in R〈A,B〉. This makes the case (m, k) = (8,4) of particular
interest for Question 1.1.

Our interest in Question 1.1 has two motivations. One is its relation to the BMV conjec-
ture. Although the question is known to be stronger than the BMV conjecture and we have
no particular reason to think it will be easier to prove than the BMV conjecture itself, it is
clearly related to the BMV conjecture and it may be helpful to explore it. A second motiva-
tion is the relation to Connes’ embedding problem. For positive semidefinite matrices A and
B , the trace of S6,3(A,B) is always nonnegative, though it is not cyclically equivalent to a
sum of squares in C〈X,Y 〉; as was pointed out in [7], this makes S6,3(A,B), with A and B

positive operators in a II1-factor, an interesting test case for Connes’ embedding problem.
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In a similar way, if Question 1.1 turns out to have a positive answer for S8,4(A,B), then
because of Proposition 3.8, then it will provide another interesting test case for Connes’
embedding problem, involving self-adjoint operators. At this point, it seems important to
generate such test cases.

After a first version of this paper was circulated, we learned that S. Burgdorf (see Re-
marks (b) and (c) of Sect. 4 of [2]) had, long previously to us, also found that if m is not
a multiple of 4, then Sm,4(A,B) is cyclically equivalent to a sum of Hermitian squares in
R〈A,B〉; no proof was given in [2].

2 Some Non-sum-of-Squares Results

In this section, we show that Sm,k(A,B) is not cyclically equivalent to a sum of Hermitian
squares in R〈X,Y 〉 for various values of m and k, all of which are even.

Let Wq,p(A,B) denote the set of all words in A and B containing q A’s and p B’s.
Let Z denote the column vector whose entries are all words in W�,k(A,B) in some fixed
order, and similarly let ZX and, respectively, ZY be column vectors containing all elements
of XW�−1,k(A,B)X, respectively, YW�,k−1(A,B)Y . Klep and Schweighofer have shown
(Proposition 3.3 of [6]) that, for integers k and �, S2(k+�),2k(A,B) is cyclically equivalent
to a sum of Hermitian squares in R〈X,Y 〉 if and only if there are real, positive semidefinite
matrices H , HX and HY such that

Z∗HZ + Z∗
XHXZX + Z∗

Y HY ZY

cyc∼ S2(k+�),2k(A,B), (2)

where Z∗ denotes the row vector whose entries are the adjoints of the entries of Z, etc. Let
us denote the matrix entry of H corresponding to words u,v ∈ W�,k(A,B) by H(u,v), and
similarly for HX and HY . Thus, we have

Z∗HZ =
∑

u,v∈W�,k(A,B)

H(u, v)u∗v, (3)

and similarly for the other two terms.

Remark 2.1 If H is a matrix as appearing in (3), and if Ĥ is the matrix defined by Ĥ (u, v) =
H(u∗, v∗), then

Z∗ĤZ =
∑

u,v

H(u∗, v∗)u∗v =
∑

u,v

H(u, v)uv∗ cyc∼
∑

u,v

H(v,u)v∗u = Z∗HZ,

where the last equality uses that H is symmetric. In a similar way, defining ĤX(u, v) =
ĤX(u∗, v∗) and ĤY (u, v) = ĤY (u∗, v∗), we have

Z∗
XĤXZX

cyc∼ Z∗
XHXZX,

Z∗
Y ĤY ZY

cyc∼ Z∗
Y HY ZY .

Consequently, if H , HX and HY are such that (2) holds, then by replacing H with (H +
Ĥ )/2, if necessary, and similarly for HX and HY , we may without loss of generality assume

H(u,v) = H(u∗, v∗), (u, v ∈ W�,k(A,B)), (4)
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HX(u, v) = HX(u∗, v∗), (u, v ∈ XW�−1,k(A,B)X), (5)

HY (u, v) = HY (u∗, v∗), (u, v ∈ YW�,k−1(A,B)Y ). (6)

Suppose, furthermore, we have k = �. Let σ is the map on words that exchanges A

and B and exchanges X and Y , extended by linearity to R〈X,Y 〉. Then σ(Z∗HZ) =
Z∗Hσ Z, where Hσ (u, v) = H(σ(u), σ (v)), and, similarly, σ(Z∗

XHXZX) = Z∗
Y Hσ

XZY and
σ(Z∗

Y HY ZY ) = Z∗
XHσ

Y ZX , where Hσ
X(u, v) = HX(σ(u), σ (v)) and Hσ

Y (u, v) = HY (σ(u),
σ(v)). Consequently, if H , HX and HY are such that (2) holds, then since S2(k+�),2k(A,B)

is σ -invariant and since σ respects
cyc∼ , by replacing H with (H + Hσ )/2, HX with

(HX + Hσ
Y )/2 and HY with (HY + Hσ

X)/2, if necessary, we may without loss of general-
ity assume

H(σ(u), σ (v)) = H(u,v), (u, v ∈ W�,k(A,B)), (7)

HY (σ(u), σ (v)) = HX(u, v), (u, v ∈ XW�−1,k(A,B)X). (8)

Since σ(u∗) = σ(u)∗, we can assume that (4)–(6) and (7)–(8) hold simultaneously.
We note that the relation (4) will be used in this section, while (7) will be used only in

the proof of Proposition 3.8, and the conditions on HX and HY won’t be needed at all in this
paper.

Remark 2.2 For a given word w ∈ W2�,2k(A,B), we are interested in the different ways we
can have

w
cyc∼ u∗v, (u, v ∈ W�,k(A,B)), (9)

w
cyc∼ u∗

XvX, (uX, vX ∈ XW�−1,k(A,B)X), (10)

w
cyc∼ u∗

Y vY , (uY , vY ∈ YW�,k−1(A,B)Y ). (11)

Indeed, if |[w]| denotes the number of different elements of W2�,2k(A,B) that are cyclically
equivalent to w, and assuming (2) holds, then we have

|[w]| =
∑

{(u,v)|u∗v
cyc∼ w}

H(u,v) +
∑

{(uX,vX)|u∗
X

vX
cyc∼ w}

HX(uX, vX)

+
∑

{(uY ,vY )|u∗
Y

vY
cyc∼ w}

HY (uY , vY ), (12)

where the respective sums are over all pairs (u, v) such that (9) holds, all pairs (uX, vX) such
that (10) holds and all pairs (uY , vY ) such that (11) holds. To find all the ways we have (9),
we can write down all the cyclic permutations of w and record those for which the first
k + � letters consists of � A’s and k B’s. Furthermore, if we have an instance of (10) with
uX = Xu′X and vX = Xv′X, u′, v′ ∈ W�−1,k(A,B), then w

cyc∼ X(u′)∗Av′X
cyc∼ A(u′)∗Av′;

this yields an instance of (9), where both u∗ and v start with A, and clearly each such
instance corresponds in this manner to an instance of (10). Similarly, the instances of (11)
are in one-to-one correspondence with those instances of (9) where both u∗ and v start
with B .

We will apply (in a finite dimensional setting) the following elementary lemma, whose
proof we provide for completeness.
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Lemma 2.3 Let H = H1 ⊕ H2 be an orthogonal direct sum decomposition of a Hilbert
space and let T ∈ B(H) be a positive operator: T ≥ 0. With respect to the given decompo-
sition of H, write T in block form

T =
(

T11 T12

T21 T22

)
,

where Tij : Hj → Hi . Suppose v ∈ kerT11 ⊆ H1. Then v ∈ kerT21.

Proof If T21v �= 0, then there is w ∈ H2 such that 〈T21v,w〉 < 0. Letting t > 0 and using
T12 = T ∗

21, we have

〈T (v ⊕ tw), v ⊕ tw〉 = 2t Re〈T21v,w〉 + t2〈T22w,w〉. (13)

But taking t small enough forces the right-hand-side of (13) to be negative, which contradicts
T ≥ 0. �

Proposition 2.4 Let k and � be integers, k ≥ 3 and � ≥ 5. Then S2(�+k),2k(A,B) is not
cyclically equivalent to a sum of Hermitian squares in R〈X,Y 〉.

Proof Suppose the contrary, to obtain a contradiction. Let H , HX and HY be real, posi-
tive semidefinite matrices so that (2) holds, and without loss of generality assume also the
property (4) in Remark 2.1 holds.

We consider five elements of W2�,2k(A,B) and the different ways of writing them as
in (9). These elements are

w1 = A2�B2k, w2 = A2�−2Bk−1A2Bk+1,

w3 = A�+1B2A�−1B2k−2, w4 = A2�−4Bk−1A2B2A2Bk−1,

w5 = A�−1B2A�−1Bk−1A2Bk−1,

and their factorizations will be in terms of the elements

u1 = A�Bk, v1 = u∗
1 = BkA�,

u2 = A�−2Bk−1A2B, v2 = u∗
2 = BA2Bk−1A�−2,

u3 = AB2A�−1Bk−2, v3 = u∗
3 = Bk−2A�−1B2A,

u4 = ABk−1A�−1B, v4 = u∗
4 = BA�−1Bk−1A

of W�,k(A,B). Note that these are all distinct if k ≥ 4; in the case k = 3, the six elements
u1, u2, u3, v1, v2, v3 are distinct but we have u4 = u3 and v4 = v3. This will not bother us.

We begin with the easiest of the wj to factorize, namely, w1. In the Table 1 are listed all
the cyclically equivalent forms of w1 and it is indicated which of these can be factored as
in (9).

This also shows that there are no factorizations as in (10) or (11) (see Remark 2.2). Since
w1 has 2(k + �) cyclically equivalent forms, by (12) we must have H(u1, u1)+H(v1, v1) =
2(k + �). Since we have H(v1, v1) = H(u1, u1), we get

H(u1, u1) = k + �. (14)
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Table 1 Forms of w1 = A2�B2k

and factorizations as in (9)
cyclically equivalent form j value factorization

Aj B2kA2�−j (1 ≤ j ≤ 2�) j = � v∗
1v1

Bj A2�B2k−j (1 ≤ j ≤ 2k) j = k u∗
1u1

Table 2 Forms of w2 = A2�−2Bk−1A2Bk+1 and factorizations as in (9)

cyclically equivalent form j value factorization

Aj Bk−1A2Bk+1A2�−2−j (1 ≤ j ≤ 2� − 2) j = � − 2 v∗
2v1

Bj A2Bk+1A2�−2Bk−1−j (1 ≤ j ≤ k − 1) none

Aj Bk+1A2�−2Bk−1A2−j (1 ≤ j ≤ 2) none

Bj A2�−2Bk−1A2Bk+1−j (1 ≤ j ≤ k + 1) j = k u∗
1u2

Table 3 Forms of
w3 = A�+1B2A�−1B2k−2 and
factorizations as in (9)

cyclically equivalent form j value factorization

Aj B2A�−1B2k−2A�+1−j (1 ≤ j ≤ � + 1) j = 1 v∗
3v1

Bj A�−1B2k−2A�+1B2−j (1 ≤ j ≤ 2) none

Aj B2k−2A�+1B2A�−1−j (1 ≤ j ≤ � − 1) none

Bj A�+1B2A�−1B2k−2−j (1 ≤ j ≤ 2k − 2) j = k u∗
1u3

Table 4 Forms of w4 = A2�−4Bk−1A2B2A2Bk−1 and factorizations as in (9)

cyclically equivalent form j value factorization

Aj Bk−1A2B2A2Bk−1A2�−4−j (1 ≤ j ≤ 2� − 4) j = � − 2 v∗
2v2

Bj A2B2A2Bk−1A2�−4Bk−1−j (1 ≤ j ≤ k − 1) none

Aj B2A2Bk−1A2�−4Bk−1A2−j (1 ≤ j ≤ 2) none

Bj A2Bk−1A2�−4Bk−1A2B2−j (1 ≤ j ≤ 2) j = 1 u∗
2u2

Aj Bk−1A2�−4Bk−1A2B2A2−j (1 ≤ j ≤ 2) none

Bj A2�−4Bk−1A2B2A2Bk−1−j (1 ≤ j ≤ k − 1) none

The cyclically equivalent forms and all factorizations of w2, w3, w4 and w5 as in (9) are
given in Tables 2–5. (Note that the assertions in rows 2, 3 and 6 of Table 4 do require � ≥ 5.)

From these, we see that each of the words wj , 2 ≤ j ≤ 5 has 2(k + �) different cyclically
equivalent forms, and none have factorizations involving X or Y , as in (10) or (11). Looking
at the two factorizations of w2, and using (12) and H(v2, v1) = H(v1, v2) = H(u1, u2), we
conclude

H(u1, u2) = k + �. (15)

Similarly, considering all the factorizations of w3, w4 and w5 we get, respectively,

H(u1, u3) = k + � (16)

H(u2, u2) = k + � (17)

2H(u2, u3) + H(u4, u4) = k + �. (18)
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Table 5 Forms of w5 = A�−1B2A�−1Bk−1A2Bk−1 and factorizations as in (9)

cyclically equivalent form j value factorization

Aj B2A�−1Bk−1A2Bk−1A�−1−j (1 ≤ j ≤ � − 1) j = 1 v∗
3v2

Bj A�−1Bk−1A2Bk−1A�−1B2−j (1 ≤ j ≤ 2) j = 1 u∗
4u4

Aj Bk−1A2Bk−1A�−1B2A�−1−j (1 ≤ j ≤ � − 1) j = � − 2 v∗
2v3

Bj A2Bk−1A�−1B2A�−1Bk−1−j (1 ≤ j ≤ k − 1) j = 1 u∗
2u3

Aj Bk−1A�−1B2A�−1Bk−1A2−j (1 ≤ j ≤ 2) j = 1 v∗
4v4

Bj A�−1B2A�−1Bk−1A2Bk−1−j (1 ≤ j ≤ k − 1) j = k − 2 u∗
3u2

Table 6 Forms of w6 = A6B6

and factorizations as in (9)
cyclically equivalent form j value factorization

Aj B6A6−j (1 ≤ j ≤ 6) j = 3 v∗
5v5

Bj A6B6−j (1 ≤ j ≤ 6) j = 3 u∗
5u5

Now from (14)–(17), for the 3 × 3 submatrix of H corresponding to the entries u1, u2, u3,
we have

⎛

⎝
H(u1, u1) H(u1, u2) H(u1, u3)

H(u1, u2) H(u2, u2) H(u2, u3)

H(u1, u3) H(u2, u3) H(u3, u3)

⎞

⎠ =
⎛

⎝
k + � k + � k + �

k + � k + � H(u2, u3)

k + � H(u2, u3) H(u3, u3)

⎞

⎠ . (19)

From (19), the positivity of H and Lemma 2.3, we obtain also H(u2, u3) = k + �. But then,
from (18), we must have H(u4, u4) = −(k + �), which contradicts the positive semidefinite-
ness of H . �

Proposition 2.5 S12,6(A,B) is not cyclically equivalent to a sum of squares in R〈X,Y 〉.

Proof This is like the proof of Proposition 2.4, but easier. Again we assume, to obtain a
contradiction, that H , HX and HY are real, positive semidefinite matrices such that (2) holds
(with k = � = 3) and that the properties (9)–(11) hold. We need only consider the words

w6 = A6B6, w7 = A4B2A2B4, w8 = A2B2A2B2A2B2

in W6,6(A,B) and their factorizations, which will be in terms of the elements

u5 = A3B3, v5 = u∗
5 = B3A3,

u6 = AB2A2B, v6 = u∗
6 = BA2B2A

of W3,3(A,B). These factorizations are given in Tables 6–8.
Again, w6, w7 and w8 have no factorizations as in (10) or (11). From Table 6, we

see that w6 has 12 distinct cyclically equivalent forms, and since H(u5, u5) = H(v5, v5),
from (12) we get H(u5, u5) = 6. From Table 7 and H(v6, v5) = H(u6, u5) = H(u5, u6),
we get H(u5, u6) = 6, while from Table 8 we see that w8 has only four distinct cyclically
equivalent forms, and we get H(u6, u6) = 2. The 2 × 2 submatrix of H corresponding to
{u5, u6} is, therefore,

(
H(u5, u5) H(u5, u6)

H(u6, u5) H(u6, u6)

)
=

(
6 6
6 2

)
,
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Table 7 Forms of
w7 = A4B2A2B4 and
factorizations as in (9)

cyclically equivalent form j value factorization

Aj B2A2B4A4−j (1 ≤ j ≤ 4) j = 1 v∗
6v5

Bj A2B4A4B2−j (1 ≤ j ≤ 2) none

Aj B4A4B2A2−j (1 ≤ j ≤ 2) none

Bj A4B2A2B4−j (1 ≤ j ≤ 4) j = 3 u∗
5u6

Table 8 Forms of
w8 = A2B2A2B2A2B2 and
factorizations as in (9)

cyclically equivalent form j value factorization

Aj B2A2B2A2B2A2−j (1 ≤ j ≤ 2) j = 1 v∗
6v6

Bj A2B2A2B2A2B2−j (1 ≤ j ≤ 2) j = 1 u∗
6u6

which is not positive semidefinite. This gives a contradiction. �

3 Sums of Squares in R〈A,B〉

In this section, we prove some results related to Question 1.1. As per the discussion in the
introduction (see Proposition 2.3 of [6]), we say f,g ∈ R〈A,B〉 are cyclically equivalent if
and only if f −g is a sum of commutators of elements from R〈A,B〉. This holds if and only
if, for every word w in A and B , the sum over words v that are cyclic permutations of w of
the coefficients in f of v agrees with the same sum for g.

Clearly, if Sm,k(A,B) is cyclically equivalent to a sum
∑

i f
∗
i fi of Hermitian squares,

for fi ∈ R〈A,B〉, then Question 1.1 has a positive answer for this particular pair (m, k).
Of course, S2m,0(A,B) = A2m is a Hermitian square in R〈A,B〉, for every integer m ≥ 0.
Verification of the following two lemmas is straightforward.

Lemma 3.1 Let m ∈ N. Then

S4m,2(A,B)
cyc∼ mf ∗

mfm + 2m

m−1∑

j=0

f ∗
j fj ,

where

f0 = BA2m−1,

fj = Aj−1BA2m−j + AjBA2m−j−1, (1 ≤ j ≤ m).

Lemma 3.2 Let m ∈ N. Then

S4m+2,2(A,B)
cyc∼ (2m + 1)

m∑

j=0

f ∗
j fj ,

where

f0 = BA2m,

fj = Aj−1BA2m−j+1 + AjBA2m−j , (1 ≤ j ≤ m).
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The next proposition shows that S2q,4(A,B) is cyclically equivalent to a sum of Her-
mitian squares in R〈A,B〉, when q is odd. Note that Klep and Schweighofer in Sect. 5
of [6] proved this in the case q = 7. In fact, we found the expression (20) below by explo-
ration using Mathematica [10] and checked it by computation for all values of m ≤ 20. The
best proof we could find, which is given below, turned out to be surprisingly intricate.

Proposition 3.3 Let m ∈ N. Then

S4m+2,4(A,B)
cyc∼ (2m + 1)

m∑

p=0

f ∗
p fp, (20)

where

f0 =
2m−1∑

s=0

BA2m−s−1BAs,

fp =
p∑

i=p−1

2m−i−1∑

s=p

AiBA2m−s−i−1BAs, (1 ≤ p ≤ m − 1),

fm = Am−1B2Am.

As before Wq,4(A,B) denotes the set of all words in A and B with exactly q A’s and four
B’s. Let N0 = N ∪ {0}. For ι = (ι1, ι2, ι3, ι4.ι5) ∈ N5

0 let

E(ι) = Aι1BAι2BAι3BAι4BAι5

and take

I = {ι ∈ N5
0 | ι1 + ι2 + ι3 + ι4 + ι5 = 4m − 2}.

Note that the map ι �→ E(ι) gives a bijection from I onto W4m−2,4(A,B). With this
notation we may write

S4m+2,4(A,B) =
∑

ι∈I

E(ι).

The proof of Proposition 3.3 will use the following three lemmas. The first of these is
readily verified, and a proof will be omitted.

Lemma 3.4 Each word in W4m−2,4(A,B) is cyclically equivalent to a unique word of the
form

BAk1BAk2BAk3BAk4 ,

where κ = (0, k1, k2, k3, k4) ∈ I satisfies either

k1 ≤ k3 and k2 < k4 (21)

or

k1 = k3 ≤ k2 = k4. (22)
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We will call the words (or indices) described in (21) and (22) canonically ordered and
those of the form (21) will be called type I while those given by (22) will be called type II.
Since the first letter of any canonically ordered word is a B , canonically ordered words are
parameterized by only four non-negative integers, and we’ll frequently omit to write the first
element of a canonically ordered index κ , since it is always zero.

Lemma 3.5

#{κ ∈ I | κ is canonically ordered of type I} = 2m(2m − 1)(2m + 1)

3
.

#{κ ∈ I | κ is canonically ordered of type II} = m.

Proof We recall that a partition of n ∈ N into k parts is a k-tuple (a1, a2, . . . , ak) such that
1 ≤ a1 ≤ a2 ≤ · · · ≤ ak and a1 + a2 + · · · + ak = n. We denote it as (a1, a2, . . . , ak) � n.

Consider the sets

B = {(a, b, a1, a2, b1, b2) ∈ N6 | a + b = 4m + 1, (a1, a2) � a, (b1, b2) � b}

and

A = {κ ∈ I | κ is canonically ordered of type I}.
Take the function from A into B given by

(k1, k2, k3, k4) �→ (k1 + k3 + 2, k2 + k4 + 1, k1 + 1, k3 + 1, k2 + 1, k4).

One can show this function is a bijection onto B . Thus,

#A =
∑

(a,b)∈N2

a+b=4m+1

⌊
a

2

⌋⌊
b

2

⌋
= 2

3
m(2m − 1)(2m + 1).

Similarly, the function

(k1, k2, k3, k4) �→ (k1 + 1, k2 + 1)

is a bijection from {κ ∈ I | κ is canonically ordered of type II} onto the set {(a, b) ∈ N2 |
(a, b) � 2m + 1}. Hence

#{κ ∈ I | κ is canonically ordered of type II} =
⌊

2m + 1

2

⌋
= m. �

The following lemma is easily verified by writing out the cyclically equivalent forms of
words; see Tables 1–8 for other exercises of this sort.

Lemma 3.6 Let w ∈ W4m−2,4(A,B) be a canonically ordered word. If w is of type I, then
there are 4m + 2 words in W4m−2,4(A,B) that are cyclically equivalent to w, while if w is
of type II, then there are 2m+ 1 words in W4m−2,4(A,B) that are cyclically equivalent to w.

Proof of Proposition 3.3 Let l = 2m − 1.
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For g ∈ R〈A,B〉 and w a word in A and B , we let cw(g) denote the coefficient of w

in g. By Lemmas 3.4 and 3.6 it will suffice to show, for every canonically ordered word
w ∈ W4m−2,4(A,B),

∑

{v|vcyc∼ w}

m∑

p=0

cv(f
∗
p fp) =

{
2, w of type I,

1, w of type II
(23)

i.e., for each such w, there is only one representative in
∑m

p=0 f ∗
p fp if w is type II and

exactly two representatives if w is type I.
We begin by taking a closer look at each f ∗

p fp . We have

f ∗
0 f0 =

∑

0≤s,t≤l

AsBAl−sB2Al−tBAt =
∑

ι∈I0

E(ι),

where

I0 = {ι = (s, l − s,0, l − t, t) | 0 ≤ s, t ≤ l}
and for 1 ≤ p ≤ m − 1,

f ∗
p fp =

∑

p−1≤i,j≤p

∑

p≤s≤l−i
p≤t≤l−j

AsBAl−i−sBAi+jBAl−j−tBAt

=
∑

ι∈Ip(p−1,p−1)

E(ι) +
∑

ι∈Ip(p−1,p)

E(ι) +
∑

ι∈Ip(p,p−1)

E(ι) +
∑

ι∈Ip(p,p)

E(ι),

where

Ip(i, j) = {ι = (s, l − i − s, i + j, l − j − t, t) | p ≤ s ≤ l − i,p ≤ t ≤ l − j},
while

f ∗
mfm =

∑

ι∈Im

E(ι),

where

Im = {(m,0,2m − 2,0,m)}.
We also write I0(0,0) = I0 and Im(m − 1,m − 1) = Im.

Let J be the disjoint union

J0 �
⎛

⎝
m−1⊔

p=1

⊔

p−1≤i,j≤p

Jp(i, j)

⎞

⎠ � Jm,

where each Jp(i, j) is a copy of the corresponding Ip(i, j) and similarly for J0 = J0(0,0)

and Jm = Jm(m − 1,m − 1). Formally, given 0 ≤ p ≤ m and max{0,p − 1} ≤ i, j ≤
min{p,m − 1}, we set

Jp(i, j) = {(p, i, j, ι) | ι ∈ Ip(i, j)}

and we let α
(i,j)
p : Ip(i, j) → Jp(i, j) be the bijection given by ι �→ (p, i, j, ι).
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Consider the function O : I → I , where O(ι) is the index of the canonically ordered
word that is cyclically equivalent to E(ι). This function O is explicitly given on I0 and on
each Ip(i, j) (1 ≤ p ≤ m − 1, p − 1 ≤ i, j ≤ p) as follows. For ι = (s, l − i − s, i + j, l −
j − t, t) ∈ Ip(i, j) we have

O(ι) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

U(i, j, s, t), if (i = j and t > s) or (i > j and t − 1 > s)

or (j > i and t > s − 1),

L(i, j, s, t), if (i = j and t ≤ s) or (i > j and t ≤ s − 1)

or (j > i and t ≤ s − 1),

where U and L are given by

U(i, j, s, t) = (0, l,0, l) +

⎛

⎜⎜⎝

1 1 0 0
0 −1 0 −1
0 0 1 1

−1 0 −1 0

⎞

⎟⎟⎠

⎛

⎜⎜⎝

i

j

s

t

⎞

⎟⎟⎠ ,

L(i, j, s, t) = (l,0, l,0) +

⎛

⎜⎜⎝

−1 0 −1 0
1 1 0 0
0 −1 0 −1
0 0 1 1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

i

j

s

t

⎞

⎟⎟⎠ .

The canonical form of an element of J is naturally taken to be the same as the canonical
form of the element of I to which it corresponds and we denote the “canonical form map”
also by O : J → I .

We now work on proving (23). For 0 ≤ p ≤ m − 1 define

ιp = (p, l − 2p,2p, l − 2p,p) ∈ Ip(p,p).

Then O(ιp) = (l − 2p,2p, l − 2p,2p), which is of type II. We will show that there are
no other words of type II in J . Since we have m different values of O , Lemma 3.5 will
imply (23) in the case w is of type II.

Let K = J \ {α(p,p)
p (ιp) | 0 ≤ p ≤ m − 1}. We will find a partition of K into two sets, B

and C, both with cardinality 2m(2m − 1)(2m + 1)/3, and a bijection β : B → C such that
O(β(ι)) = O(ι) and check that O restricted to B is injective and its values are of type I.
From this it will follow that (23) holds in the case w is of type I, and this will also complete
the proof of (23) in the case w is of type II.

The partition and bijection are defined below in several parts. In all cases, it is straight-
forward to check the identity O(β(i)) = O(i).

(i) For 0 ≤ p ≤ m − 1 take

B1(p) = Ip+1(p,p),

C1(p) = {(s, l − p − s,2p, l − p − t, t) ∈ Ip(p,p) | p + 1 ≤ s, t}.

We notice B1(p) = C1(p) for all 0 ≤ p ≤ m − 1. This identification is used to define
the restriction of β to Jp+1(p,p) by β ◦ α

(p,p)

p+1 = α
(p,p)
p . For ι = (s, l − p − s,2p, l −



792 B. Collins et al.

p − t, t) ∈ Ip+1(p,p) we have

O(ι) =
{

(l − p − s,2p, l − p − t, s + t), p + 1 ≤ t ≤ s ≤ l − p,

(2p, l − p − t, s + t, l − p − s), p + 1 ≤ s < t ≤ l − p,

and this element is of type I.
Let B1 = ⋃m−1

p=0 α
(p,p)

p+1 (B1(p)) and C1 = ⋃m−1
p=0 α

(p,p)
p (C1(p)). We have

#B1 =
m−1∑

p=0

(2(m − p) − 1)2.

(ii) For 1 ≤ p ≤ m − 1, let

B2(p) = {(s, l − (p − 1) − s,2p − 1, l − p − t, t) ∈ Ip(p − 1,p) | p + 1 ≤ s},
C2(p) = {(s̃, l − p − s̃,2p − 1, l − (p − 1) − t̃ , t̃ ) ∈ Ip(p,p − 1) | p + 1 ≤ t̃}.

For ι = (s, l − (p − 1) − s,2p − 1, l − p − t, t) ∈ B2(p) let

β(α(p−1,p)
p (ι)) = α(p,p−1)

p (s − 1, l − p − (s − 1),2p − 1, l − (p − 1) − (t + 1), t + 1).

Then β : α(p−1,p)
p (B2(p)) → α

(p,p−1)
p (C2(p)) is a bijection and a computation shows

O(β(α(p−1,p)
p (ι)))

= O(α(p−1,p)
p (ι))

=
{

(l − p − s − 1,2p − 1, l − p − t, s + t), p ≤ t ≤ s − 1 ≤ l − p,

(2p − 1, l − p − t, s + t, l − p − s − 1), p ≤ s − 1 < t ≤ l − p

and this is a word of type I. Take

B2 =
m−1⋃

p=1

α(p−1,p)
p (B2(p)), C2 =

m−1⋃

p=1

α(p,p−1)
p (C2(p)).

By disjointness, we have

#B2 =
m−1∑

p=1

(2(m − p))2.

(iii) In I0(0,0), the cases (s, t) = (0, l) and (s, t) = (l,0) have the same value under O ,
namely (0,0, l, l), which is type I. Take

B3 = {α(0,0)

0 (l,0,0, l,0)}, C3 = {α(0,0)

0 (0, l,0,0, l)}

and let β(α
(0,0)

0 (l,0,0, l,0)) = α
(0,0)

0 (0, l,0,0, l).
(iv) Consider the set

B4(0) = {(0, l,0, l − t, t) : 1 ≤ t ≤ l − 1} ⊂ I0(0,0).
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For ι = (0, l,0, l − t, t) ∈ B4(0), take

β(α
(0,0)

0 (ι)) =
{

α
(q,q)
q (l − q,0,2q, l − 2q, q), l − t even, q = l−t

2 ,

α
(q,q−1)
q (l − q,0,2q − 1, l − 2q + 1, q), l − t odd, q = l−t+1

2 .

Let B4 = α
(0,0)

0 (B4(0)) and let C4 be the image of B4 under β . A direct computation
shows

O(β(α
(0,0)

0 (ι))) = O(α
(0,0)

0 (ι)) = (0, l − t, t, l),

which is type I. We also have #B4 = 2(m − 1).
(v) Consider the set

B5(0) = {(s, l − s,0, l,0) : 1 ≤ s ≤ l − 1} ⊂ I0(0,0).

For ι = (s, l − s,0, l,0) ∈ B5(0) define

β(α
(0,0)

0 (ι)) =
{

α
(q,q)
q (q, l − q,2q,0, l − q), l − s even, q = l−s

2 ,

α
(q−1,q)
q (q, l − 2q + 1,2q − 1,0, l − q), l − s odd, q = l−s+1

2 .

Let C5 be the image of B5 under β . Then β : B5 → C5 is a bijection and

O(β(α
(0,0)

0 (ι))) = O(α
(0,0)

0 (ι)) = (l − s,0, l, s)

is of type I. We also have #B5 = 2(m − 1).
(vi) Let

B1
6 =

m−1⋃

p=1

{α(p−1,p)
p (p, l − 2p + 1,2p − 1, l − p − t, t) : p ≤ t ≤ l − p − 1},

B2
6 =

m−2⋃

p=1

{α(p,p)
p (p, l − 2p,2p, l − p − t, t) : p + 1 ≤ t ≤ l − p − 1}

and let B6 = B1
6 ∪ B2

6 . For

η = α(p−1,p)
p (p, l − 2p + 1,2p − 1, l − p − t, t) ∈ B1

6 , (24)

let

β(η) =
{

α
(q,q)
q (2m − 2p − q,2p − 1,2q, l − 2q, q), p + t odd,

α
(q,q−1)
q (2m − 2p − q,2p − 1,2q − 1, l − 2q + 1, q), p + t even,

where q = m − �p+t+1
2 �. For

η = α(p,p)
p (p, l − 2p,2p, l − p − t, t) ∈ B2

6 (25)

let

β(η) =
{

α
(q,q)
q (2m − 2p − q − 1,2p,2q, l − 2q, q), p + t odd,

α
(q,q−1)
q (2m − 2p − q − 1,2p,2q − 1, l − 2q + 1, q) p + t even,
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where q = m − �p+t+1
2 �. Take C6 to be the image of B6 under β . Then β : B6 → C6 is

a bijection and

O(β(η)) = O(η) =
{

(2p − 1, l − p − t + 1,p + t, l − 2p), η as in (24),

(2p, lp − t, p + t, l − 2p), η as in (25)

is of type I. We also have

#B6 =
m−1∑

p=1

(2(m − p) − 1) +
m−2∑

p=1

(2(m − p) − 2) = (2m − 3)(m − 1).

Lastly, we take

B =
6⊔

k=1

Bk, C =
6⊔

k=1

Ck.

A computation shows

#B =
m−1∑

p=1

(2(m − p) − 1)2 +
m−1∑

p=1

(2(m − p))2 + 1 + 4(m − 1) + (2m − 3)(m − 1)

= 1 + (2m − 1)2 + 4(m − 1) + (2m − 3)(m − 1) +
2(m−1)∑

j=1

j 2

= 2m(2m − 1)(2m + 1)

3
.

We have, thus, constructed a bijection β : B → C that satisfies O(β(η)) = O(η) and, as
can be checked, the restriction of O to B is injective and takes values that are all of type I.
Lastly the sets B and C form a partition of K . This completes the proof of Proposition 3.3.

The bijection we have defined may be better understood using some pictures, which are
contained in Figs. 1 and 2. We parameterize I0 by the square {(s, t) ∈ Z

2 : 0 ≤ s, t ≤ l} and
Im by the single point (m,m). Likewise for fixed 1 ≤ p ≤ m − 1 and i, j ∈ {p − 1,p}, the
set Ip(i, j) is parameterized by {(s, t) ∈ Z

2 : p ≤ s ≤ l − i,p ≤ t ≤ l − i}. We show the case
m = 3.

In these figures,

• The points that give words of type II are marked with diamonds.
• The light circles in the right column are matched with the circles in the left. Likewise the

solid circles. These correspond to cases 1 and 2.
In the case 2 the bijection is implemented by (s, t) �→ (s −1, t +1), form the rightmost

sub-square of side l−2p+1 in Ip(p−1,p) to the uppermost sub-square of side l−2p+1
in Ip(p,p − 1), for 1 ≤ p ≤ m − 1.

• Case 3 is marked with a solid square.
• The remaining points (which correspond to the most complicated part of the bijection),

plotted in light squares, correspond the cases 4, 5 and 6. �

The following theorem summarizes the results obtained so far in this section.
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Fig. 1 Some sets in K with
m = 3

Fig. 2 More sets in K with
m = 3

Theorem 3.7 If k = 2 and m ≥ 2 is even, or if k = 4 and m ≥ 6 is even but not a multiple
of 4, then Sm,k(A,B) is cyclically equivalent to a sum of Hermitian squares in R〈A,B〉.
Therefore, for these values of m and k, Tr(Sm,k(A,B)) ≥ 0 whenever A and B are Hermitian
matrices.

Below is a non-sum-of-squares result for S8,4(A,B). However, Question 1.1 for m = 8
and k = 4 is still open.

Proposition 3.8 The polynomial S8,4(A,B) is not cyclically equivalent to a sum of Her-
mitian squares in R〈A,B〉.

Proof We order the elements of W2,2(A,B) in the column vector

Z = (A2B2,ABAB,AB2A,BA2B,BABA,B2A2)t .
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Table 9 Representatives of
cyclic equivalence classes in
W4,4(A,B).

name word order

w1 A4B4 8

w2 A3BAB3 8

w3 A3B2AB2 8

w4 A3B3AB 8

w5 A2BA2B3 8

w6 A2BABAB2 8

w7 A2BAB2AB 8

w8 A2B2A2B2 4

w9 A2B2ABAB 8

w10 ABABABAB 2

If S8,4(A,B) were equivalent to a sums of squares in R〈A,B〉, then by Proposition 3.3

of [6], we would have S8,4(A,B)
cyc∼ Z∗HZ for H a 6 × 6 real, positive semidefinite matrix.

So suppose, to obtain a contradiction, that such exists. There are ten cyclic equivalence class
of words in W4,4(A,B). We’ve chosen one representative for each and we have listed them
in Table 9 with their orders, where we say the order of a word is the number of cyclically
equivalent forms that it has. If we denote the ith element of the vector Z by zi , then the ma-
trix whose (i, j)th entry is the symbol k ∈ {1, . . . ,10} such that wk is cyclically equivalent
to z∗

i zj is the matrix found below.

⎛

⎜⎜⎜⎜⎜⎜⎝

1 2 3 5 6 8
4 7 9 9 10 6
3 6 8 7 9 3
5 6 7 8 9 5
9 10 6 6 7 2
8 9 3 5 4 1

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The hypothesis Z∗HZ ∼ S8,4(A,B) is, therefore, equivalent to the ten linear equations

8 = H11 + H66, (26)

8 = H12 + H56, (27)

8 = H13 + H31 + H36 + H63, (28)

8 = H21 + H65, (29)

8 = H14 + H41 + H46 + H64, (30)

8 = H15 + H26 + H32 + H42 + H53 + H54, (31)

8 = H22 + H34 + H43 + H55, (32)

4 = H16 + H33 + H44 + H61, (33)

8 = H23 + H24 + H35 + H45 + H51 + H62, (34)

2 = H25 + H52 (35)

in the entries of the matrix H . However, H is real symmetric. Moreover, we may assume
without loss of generality that the relations (4) and (7) from Remark 2.1 hold, and we find,
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therefore, that H commutes with the permutation matrices corresponding to the order-two
permutations

τ : 1 ↔ 6, 2 ↔ 5.

σ : 1 ↔ 6, 2 ↔ 5, 3 ↔ 4.

Thus, we have

H =

⎛

⎜⎜⎜⎜⎜⎜⎝

H11 H12 H13 H13 H15 H16

H12 H22 H23 H23 H25 H15

H13 H23 H33 H34 H23 H13

H13 H23 H34 H33 H23 H13

H15 H25 H23 H23 H22 H12

H16 H15 H13 H13 H12 H11

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Equations (26)–(35) now yield several relations, for example, from (26) we get H11 = 4.
Using these relations to eliminate some variables, we have that H equals the matrix

⎛

⎜⎜⎜⎜⎜⎜⎝

4 4 2 2 4 − 2H23 2 − H33

4 H22 H23 H23 1 4 − 2H23

2 H23 H33 4 − H22 H23 2
2 H23 4 − H22 H33 H23 2

4 − 2H23 1 H23 H23 H22 4
2 − H33 4 − 2H23 2 2 4 4

⎞

⎟⎟⎟⎟⎟⎟⎠
.

We will show that there is no positive semidefinite real matrix of this form. To make the for-
mulas slightly more readable, we will use the symbols x2 = H22 and x3 = H33. Of course,
we must have x2 ≥ 0 and x3 ≥ 0. We will consider compressions of H obtained by restrict-
ing to rows and columns in subsets of {1, . . . ,6}. The compression to {1,2} is

( 4 4
4 x2

)
, and

from positivity we obtain x2 ≥ 4. Compression to {1,6} yields |2−x3| ≤ 4, so x3 ≤ 6. Com-
pression to {1,3} yields x3 ≥ 1. The determinant of the compression of the matrix H to
{1,3,4,6} is the polynomial with factorization

(2 + x3)(x2 + x3 − 4)(8 − 6x2 + 2x3 + x2x3 − x2
3 ).

Since x3 ≥ 1 and x2 ≥ 4, the first two factors are strictly positive. So the third factor must be
nonnegative, and we conclude

x2(x3 − 6) ≥ (x3 − 4)(x3 + 2).

Since x3 ≤ 6 we must have x3 ≤ 4 and

x2 ≤ (4 − x3)(x3 + 2)

6 − x3
.

But combining this with x2 ≥ 4, we get 24 − 4x3 ≤ 8 + 2x3 − x2
3 , so x2

3 − 6x3 + 16 ≤ 0,
which is impossible. This is the desired contradiction. �

4 Proof of Theorem 1.2

In this section, we prove Theorem 1.2 using a straightforward application of the method of
Lagrange multipliers.
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Lemma 4.1 Let n,m,k ∈ N and fix an n × n Hermitian matrix B . Consider the function
A �→ Tr(Sm,k(A,B)) with domain consisting of the n × n Hermitian matrices A such that
Tr(A2) = 1. Suppose A0 is a point where this function has a relative extremum. Then

Sm−1,k(A0,B) = m − k

m
Tr(Sm,k(A0,B))A0. (36)

Proof This is an application of the method of Lagrange multipliers to the problem of op-
timizing Tr(Sm,k(A,B)) subject to the constraint Tr(A2) = 1. (Compare to Appendix A
of [6].) The space of Hermitian n × n matrices is a real vector space of dimension n2. If H

and A are Hermitian matrices, then

d

dλ

∣∣∣∣
λ=0

Tr((A + λH)2) = 2 Tr(HA). (37)

Letting H run through a fixed basis for the space of n × n Hermitian matrices, the list of
values (37) forms the gradient of the constraint function with respect to the n2 variables.

Letting Wm−k,k(A,B) be the set of all words in noncommuting variables A and B with
m− k A’s and k B’s, we have |Wm−k,k(A,B)| = (

m

k

)
. If w = w(A,B) ∈ Wm−k,k(A,B), then

d
dλ

∣∣
λ=0

w(A + λH,B) equals the sum of the m − k words obtained by replacing in turn and
individually the letters of w that are equal to A by H . Thus, d

dλ

∣∣
λ=0

Sm,k(A + λH,B) is the
sum of all (m − k)

(
m

k

)
words in A, B and H , where A appears m − k − 1 times, B appears

k times and H appears once. Taking the trace, we get

d

dλ

∣∣∣∣
λ=0

Tr(Sm,k(A + λH,B)) = mTr(HSm−1,k(A,B)). (38)

Letting H run through the same basis as taken above, the list of values (38) forms the
gradient of the objective function with respect to the n2 variables.

By the method of Lagrange multipliers, we conclude that at a relative extremum A0,
these two gradients must be parallel. In other words, we must have

2μTr(HA0) = mTr(HSm−1,k(A0,B))

for some μ ∈ R and all H , and this implies

2μA0 = mSm−1,k(A0,B).

Multiplying both sides by A0, taking the trace and using Lemma 2.1 of [4], we get

2μ = 2μTr(A2
0) = mTr(A0Sm−1,k(A0,B)) = (m − k)Tr(Sm,k(A0,B)),

and (36) follows. �

Proof of Theorem 1.2 The implication (1) =⇒ (2) is clear.
Suppose (1) does not hold. Let A0 and B0 be a Hermitian n × n matrices where

Tr(Sm,k(A,B)) takes its absolute minimum subject to Tr(A2) = Tr(B2) = 1. By assump-
tion, we have Tr(Sm,k(A0,B0)) < 0. By Lemma 4.1 and the analogue obtained by switching
A and B , we have

Sm−1,k(A0,B0) = m − k

m
Tr(Sm,k(A0,B0))A0,
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Sm,k−1(A0,B0) = k

m
Tr(Sm,k(A0,B0))B0.

Therefore, the Hermitian matrix

Sm,k(A0,B0) = A0Sm−1,k(A0,B0) + B0Sm−1,k−1(A0,B0)

= Tr(Sm,k(A0,B0))

(
m − k

m
A2

0 + k

m
B2

0

)

has only nonpositive eigenvalues. Thus, (2) does not hold. �
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